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Small-amplitude oscillatory forcing on
two-layer plane channel flow

By ADRIAN V. COWARD  YURIKO Y. RENARDY

Department of Mathematics and ICAM, Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061-0123, USA

(Received 14 August 1995 and in revised form 5 March 1996)

The effect of oscillatory forcing as a dynamic stabilization or destabilization mechanism
for two-layer plane Couette–Poiseuille flow at low Reynolds number is studied using
numerical and asymptotic methods. The flow is driven by the relative planar motion
of the upper boundary and a pressure gradient in the streamwise direction. Both
driving forces are composed of a steady part and small-amplitude time-periodic
fluctuations. An asymptotic expansion for the growth rates for small amplitudes is
developed and the correction terms are quadratic in the amplitudes. The modulations
to the steady flow can have either a stabilizing or destabilizing influence depending
upon the conditions of flow. Complete stabilization is possible for certain flows which
are otherwise unstable owing to the viscosity stratification across the interface. The
combined pressure and velocity fluctuations can have an opposite effect on the flow
stability to that induced by the separate time-periodic forcing mechanisms.

1. Introduction

In flows of two immiscible liquids (Aminataei, Maithili Sharan & Singh 1988;
chapter 1 of Joseph & Renardy 1993; Renardy 1995; Ranjbaran & Khomami 1996),
studying the stability of the interface aids the understanding of the optimum flux
conditions and can be used to help maintain a desired flow configuration. A two-layer
flow may be unstable if the viscosities of the two fluids are different (Yih 1967). When
the more viscous fluid occupies the thinner layer, the interfacial mode is unstable,
whereas converse arrangements may be linearly stable to long waves leading to a thin-
layer effect (Hooper 1985; Renardy 1987). Surface tension has a negligible effect on
long wavelength disturbances but is important for short waves (Hooper & Boyd 1983;
Hinch 1984). General wavelength disturbances are investigated by Renardy (1985),
who shows examples of maximum growth rates attained for O(1) waves. Renardy
(1987) carried out an analytical study for fluids with slightly different mechanical
properties, showing the explicit dependence of the eigenvalues on the parameters.
Tilley, Davis & Bankoff (1994a, b) and Chen & Aidun (1994) considered two-layer
flows down an inclined channel for long-wavelength disturbances. In the case of a
density difference, the inclined problem differs from the plane Couette–Poiseuille flow
in that the driving pressure gradients, which involve gravity, are different in each fluid.
In the absence of gravity, the two problems are identical.

The inclusion of an oscillatory component to the steady flow can enhance or reduce
stability (Grosch & Salwen 1968; Hall 1975; Davis 1976; von Kerczek 1982; Kelly &
Hu 1993; Hu & Kelly 1995). Yih (1968) considered the stability of a viscous fluid layer
on a flat plate performing a simple harmonic motion in its own plane. There is no
viscosity coupling between the fluid and the air layer above. In the absence of plate
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oscillations, the mean flow is zero, and the flow is linearly stable. Using Floquet theory,
he showed that the imposed oscillations can cause long-wavelength disturbances to
become unstable. This was extended by von Kerczek (1987) in a study of the flow down
a vertical plate which is performing a simple harmonic motion in its own plane. Using
a similar long-wave expansion, von Kerczek established windows of stability.

Coward, Papageorgiou & Smyrlis (1995) studied the core–annular flow of two fluids
in a vertical pipe. An oscillatory pressure gradient drives the flow in the axial direction.
They obtained an evolution equation which describes the temporal development of the
interface position for axisymmetric disturbances to the base flow. They show that the
inclusion of the time-periodic component gives rise to quasi-periodic travelling waves
which move in the streamwise direction. Coward & Papageorgiou (1994) considered
the flow of two superposed fluids between parallel plates, one of which oscillates in the
streamwise direction. They used an approach similar to that of Yih (1968) to consider
the overall growth or decay of long-wavelength perturbations over a complete period
of the forced boundary oscillations. The authors obtained an explicit formula for the
Floquet exponent. This can be positive, zero, or negative and indicates how the various
physical parameters cause the disturbances to the time-periodic flow to grow, remain
neutral, or decay. Such a methodology is in contrast to a quasi-static approach in
which time is treated as a parameter and instability is determined by considering all
parameterized profiles. Coward & Papageorgiou showed that the oscillatory forcing of
two-layer plane Couette flow can either stabilize or destabilize the long-wavelength
perturbations. They obtained representative results which show how an unstable
interface can be completely stabilized by the time-periodic motion of the upper
boundary.

In this investigation, we extend the work of Coward & Papageorgiou (1994) in two
ways. First, we consider disturbances of arbitrary wavenumber. Secondly, we consider
the inclusion of a streamwise pressure gradient which contains a steady component and
a time oscillatory part which may have a phase shift from the oscillations imposed on
the bounding upper plate. In §2 we present the base solution for oscillatory plane
Couette–Poiseuille flow. We derive the momentum equations governing the stability of
the flow together with the appropriate boundary and interface conditions (Appendix).
We restrict our investigation to the case when the oscillations have small amplitude.
This enables us to use a Floquet theory to calculate the overall growth or decay of
disturbances over a complete oscillation cycle. In §3 we describe the numerical scheme
used to solve the stability problem. In §4 we consider the case when perturbations to
the base flow have asymptotically long and short wavelengths. We derive closed-form
expressions for the growth rates of the interfacial mode, which we compare and verify
with our results given by the numerical method. In §5, we show results for general
wavenumber disturbances. Our conclusions are given in §6. Since the oscillation
amplitude is assumed to be small, and the effect on the growth rate is proportional to
the square of the oscillation amplitude, our numerical results show small effects.
However, the results show trends that may persist for larger values of the oscillation
amplitude where this analysis cannot be carried out. In particular, we show that for a
thin lubricating layer, the results on differences in layer thickness may be significant.

2. Equations governing the two-layer flow

Two fluids of densities ρ
i
(i¯ 1, 2), and viscosities µ

i
lie in layers between infinite

parallel plates located at z*¯ 0, l*. Asterisks are used for dimensional variables. The
lower plate is at rest. The upper plate moves in its plane with a steady velocity (U$

u
, 0, 0)
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together with superposed sinusoidal oscillations of magnitude ∆$
v
. At a given time t*,

the upper boundary has velocity U$
u
­∆$

v
cos (ω*t*). In the basic flow, fluid 1 occupies

the region 0% z*% l$
"

and fluid 2 occupies l$
"

% z*% l*. The steady velocity at the
interface in the basic flow is (U*(z*¯ l$

"
), 0) and for brevity, we denote U*(z*¯ l$

"
)

by U
i
. The velocity, distance, time and pressure are made dimensionless with respect to

U
i
, l*, l*}U

i
, and ρ

"
U#

i
. The basic plane Couette–Poiseuille flow has a streamwise

pressure gradient ®G*­∆$
p
cos (ω*t*®δ) in the x-direction. Reynolds numbers in

each fluid are denoted by R
"
¯U

i
l*ρ

"
}µ

"
and R

#
¯U

i
l*ρ

#
}µ

#
. There are seven

dimensionless parameters which quantify the steady flow: a Reynolds number, say R
"
,

the undisturbed depth l
"

of fluid 1, a surface tension parameter T¯ (surface tension
coefficient)}(µ

#
U
i
), a Froude number F given by F #¯U#

i
}gl* where g is the gravi-

tational acceleration constant, a dimensionless pressure gradient G¯G* l*}(ρ
"
U#

i
),

the viscosity ratio m¯µ
"
}µ

#
, and a density ratio r¯ ρ

"
}ρ

#
. In addition, we define

four further dimensionless parameters : the phase shift δ, the frequency of the imposed
oscillations ω¯ω* l*}U

i
, and the magnitudes of the velocity and pressure modulations

∆
v
¯∆$

v
}U

i
and ∆

p
¯∆$

p
l*}(ρ

"
U#

i
). It is convenient here also to define parameters

related to the Stokes layer thickness in each fluid: β
"
¯ l*(iω*ρ

"
}µ

"
)"/#¯ (iωR

"
)"/#, and

β
#
¯ l*(iω*ρ

#
}µ

#
)"/#¯ (iωR

#
)"/#. The dimensionless basic flow (U(z, t), 0) satisfies the

Navier–Stokes equations

¥U
¥t

¯
1

R
i

¥#U
¥z#

­
ρ
"
G

ρ
i

®
ρ
"
∆

p

ρ
i

cos (ωt®δ),
¥P
¥z

¯®
ρ
i

ρ
"
F #

,

where i¯ 1 denotes the lower layer 0% z% l
"
, and i¯ 2 denotes the upper layer

l
"
% z% 1. The no-slip velocity conditions are imposed at the solid boundaries :

U(0, t)¯ 0, U(1, t)¯U
u
­∆

v
cos (ωt). At the interface the velocity U(z¯ l

"
, t) and

tangential stress µ
i
¥U}¥z are continuous. Separating the steady and unsteady

components of the basic flow we have

U(z, t)¯U
s
(z)­"

#
²[∆

v
U
v
­∆

p
U
p
e−iδ ] (z) eiωt­c.c.´,

U
s
(z)¯

1

2

3

4

®"

#
GR

"
z#­c

"
z (0% z% l

"
),

®"

#
rGR

#
(z®1)#­c

#
(z®1)­U

u
(l
"
% z% 1),

where c.c. denotes the complex conjugate, U
u
¯ 1­(ml

#
)}l

"
®("

#
ml

#
GR

"
) the steady

upper plate speed, l
#
¯ 1®l

"
, c

"
¯ (1}l

"
)­("

#
GR

"
l
"
), and c

#
¯m(c

"
®GR

"
). The com-

ponents of the basic flow due to the oscillatory plate motion and forced pressure
fluctuations can be wrtten as follows.

U
v
(z)¯

1

2

3

4

d
$
sinh (β

"
z) (0% z% l

"
),

[cosh (β
#
(z®1))­d

%
sinh (β

#
(z®1))] (l

"
% z% 1),

U
p
(r)¯

1

2

3

4

(iω)−" [cosh (β
"
z )®1­d

"
sinh (β

"
z)] (0% z% l

"
),

(iω)−" [r cosh (β
#
(z®1))®r­d

#
sinh (β

#
(z®1))] (l

"
% z% 1),

d
"
¯ [(1®r) cosh (β

#
l
#
)­r®cosh (β

"
l
"
) cosh (β

#
l
#
)

®(mr)"/# sinh (β
"
l
"
) sinh (β

#
l
#
)] d

$
,

d
#
¯ [(mr)"/# [r cosh (β

"
l
"
) cosh (β

#
l
#
)­(1®r) cosh (β

"
l
"
)®1]

­r sinh (β
"
l
"
) sinh (β

#
l
#
)] d

$
,

d
$
¯ [sinh (β

"
l
"
) cosh (β

#
l
#
)­(mr)"/# cosh (β

"
l
"
) sinh (β

#
l
#
)]−",

d
%
¯ [sinh (β

"
l
"
) sinh (β

#
l
#
)­(mr)"/# cosh (β

"
l
"
) cosh (β

#
l
#
)] d

$
.

Solutions that are small perturbations of the above basic flow are sought. The velocity,
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pressure and interface position are perturbed by (uh ,wh ), ph , and hh , respectively. Further,
we use Fourier mode expansions of the form

(uh ,wh , ph ) (x, z, t)¯ "

#
²(u,w, p) (z, t) eiαx+σt­c.c.´,

hh (x, t)¯ "

#
²h(t) eiαx+σt­c.c.´.

We use Floquet theory to derive and solve the eigenrelation for the complex eigenvalue
σ. The flow is linearly stable to disturbances with streamwise wavenumbers α (for given
values of the eleven flow parameters) if σ has a negative real part.

After neglecting small nonlinear convective terms and eliminating u and p, the
linearized Navier–Stokes equations and equation of continuity reduce to the familiar
Orr–Sommerfeld equation

1

R
i

0 ¥%

¥z%
®2α#

¥#

¥z#
­α%1w®0iαU­

¥
¥t1 0

¥#

¥z#
®α#1w­iαw

¥#U

¥z#
¯σ 0¥#w¥z#

®α#w1 . (1)

The no-slip boundary conditions w¯ ¥}¥z¯ 0 are imposed at the upper and lower
plates z¯ 0, 1. The conditions at the interface are posed at the unknown position
z¯ l

"
­hh . Since the hh (t) is assumed to be small, the interfacial conditions are

expanded as Taylor series about the unperturbed position z¯ l
"
. Using the notation

OxP3x(fluid 1)®x(fluid 2), evaluated at z¯ l
"
, the continuity of velocity and shear

stress across the interface are

OwP¯ 0, iαhy¥U¥z z®y
¥w
¥zz¯ 0, (2a)

y µ

µ
"

0¥#w¥z#
­α#w®iαh

¥#U

¥z# 1z¯ 0, (2b)

where µ denotes µ
i
for fluid i¯ 1, 2. The balance of normal stress yields

y µ

µ
"
R

"

03α#
¥w
¥z

®
¥$w
¥z$1z­

α%hT

mR
"

­
hα#(r®1)

rF #

­y ρ

ρ
"

0σ ¥w
¥z

­
¥#w
¥t ¥z

®iαw
¥U
¥z

­iαU
¥w
¥z1z¯ 0. (2c)

Finally, the kinematic free surface condition gives

dh

dt
­σh­iαhU®w¯ 0, evaluated at z¯ l

"
. (2d )

Our aim here is to quantify the stabilizing or destabilizing effect of the time-periodic
pressure gradient and boundary motion on the otherwise steady two-layer flow. To this
end, we now take ∆

v
,∆

p
' 1 and express the eigenvalue σ and the perturbed flow as

asymptotic expansions in these two small parameters.

σ¯σ
s
­∆#

v
σ
v#

­∆#
p
σ
p#

­∆
v
∆

p
σ
vp

­O(∆$
v
,∆$

p
), (3)

h(t)¯ h
s
­"

#
∆

v
(h

v""
eiωt­h

v"#
e−iωt)­"

#
∆

p
(h

p""
ei(ωt−δ)­h

p"#
e−i(ωt−δ))

­∆
v
∆

p
(h

vp
­h

vp"
ei(#ωt−δ)­h

vp#
e−i(#ωt−δ))

­∆#
v
h
v#

­∆#
p
h
p#

­"

#
∆#

v
(h

v$"
e#iωt­h

v$#
e−#iωt)

­"

#
∆#

p
(h

p$"
e#i(ωt−δ)­h

p$#
e−#i(ωt−δ))­O(∆$

v
,∆$

p
), (4)
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w(z, t)¯w
s
(z)­"

#
∆

v
(w

v""
(z) eiωt­w

v"#
(z) e−iωt)­"

#
∆

p
(w

p""
(z) ei(ωt−δ)

­w
p"#

(z) e−i(ωt−δ))­∆#
v
w

v#
(z)­∆#

p
w

p#
(z)

­∆
v
∆

p
(w

vp
­w

vp"
ei(#ωt−δ)­w

vp#
e−i(#

ωt−δ))

­"

#
∆#

v
(w

v$"
(z) e#iωt­w

v$#
(z) e−#iωt)­"

#
∆#

p
(w

p$"
(z) e#i(ωt=δ)

­w
p$#

(z) e−#i(ωt−δ))­O(∆$
v
,∆$

p
). (5)

Note that the base flow U(z, t) is an exact solution and does not rely on the smallness
of ∆

v
and ∆

p
. After substituting the expansions (3)–(5) into the momentum equation

(1) and interface conditions (2a–d ), the partial differential system is reduced to a set
of ordinary differential equations at O(1,∆

v
,∆

p
,∆#

v
,∆#

p
,∆

v
∆

p
,…). In the following

section, these equations (given explicitly by (A 1)–(A 6) in the Appendix) are discretized
so that the eigenvalues σ can be obtained.

In the absence of imposed oscillations, interfacial stability is determined by σ¯σ
s
.

Our goal is to quantify the effect of the time-periodic forcing on the interfacial mode.
The essential element of the above expansion scheme in small amplitudes ∆

v
,∆

p
' 1 is

that it becomes sufficient to solve for the steady component of the solution at
O(∆#

v
,∆#

p
,∆

v
∆

p
). This is due to the steady streaming effectwhereO(∆

v
,∆

p
) perturbations

interact with the base state. This differs from the long-wave investigations (Yih 1968;
Coward & Papageorgiou 1994) where the wavenumber is assumed small, but the
amplitude of oscillations is not.

3. Numerical solution

We discretize the vertical variation of w(z, t) with a Chebyshev-tau scheme (Renardy
& Renardy 1993) and denote the eigenproblem as

(A®σB)X(t)¯ 0. (6)

With ∆
v
,∆

p
' 1 the eigenproblem (6) is expanded such that

X(t)¯X
s
­"

#
∆

v
(X

v""
eiωt­X

v"#
e−iωt)­"

#
∆

p
(X

p""
ei(ωt−δ)­X

p"#
e−i(ωt−δ))

­∆#
v
X

v#
­∆#

p
X

p#
­∆

v
∆

p
X

vp
­… .

This small-amplitude expansion enables us to reformulate the problem as a system of
algebraic equations rather than a differential system in which time t appears explicitly.
The expansion in the small-amplitudes is crucial in achieving this simplifying effect. To
leading order, O(1), the eigenvalue σ

s
is determined by solving (A

s
®σ

s
B)X

s
¯ 0,

which is the discretized form of the steady momentum equation and interface
conditions (A 1). At O(∆

v
) we have

(A
s
®σ

s
B)X

v""
¯®A

v
X

s
­iωBX

v""
and (A

s
®σ

s
B) X

v"#
¯A{

v
X

s
®iωBX

v"#

which correspond to equations (A 2). Note that A{
v
is the complex conjugate of matrix

A
v
. Similarly at O(∆

p
) we have

(A
s
®σ

s
B)X

p""
¯®A

p
X

s
­iωBX

p""
and (A

s
®σ

s
B)X

p"#
¯A{

p
X

s
®iωBX

p"#
.

This is the discretized representation of equations (A 3). Note that the expansion of σ
contains no terms of O(∆

v
,∆

p
). Such terms are found to be zero after substitution into

the momentum equations and interface conditions. The higher-order contributions
to σ, namely σ

v#
,σ

p#
and σ

vp
are obtained by solving the eigenrelations at

O(∆#
v
,∆#

p
,∆

v
∆

p
). These Floquet exponents are generated by the interaction between the
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O(∆
v
,∆

p
) terms of the form eiωt, e−iωt and the time-dependent components of the base

flow. The steady contributions at O(∆#
v
), O(∆#

p
) and O(∆

v
∆

p
), respectively, are

(A
s
®σ

s
B)X

v#
¯σ

v#
BX

s
­"

%
(A{

v
X

v""
®A

v
X

v"#
),

(A
s
®σ

s
B)X

p#
¯σ

p#
BX

s
­"

%
(A{

p
X

p""
®A

p
X

p"#
),

(A
s
®σ

s
B)X

vp
¯σ

vp
BX

s
­"

%
(A{

v
X

p""
e−iδ®A

v
X

p"#
eiδ­A{

p
X

v""
eiδ®A

p
X

v"#
e−iδ ).

We define the adjoint system (A{ T
s
®σa

s
B{ T )Y

s
¯ 0, so that the perturbed eigenvalues

σ
v#

,σ
p#

and σ
vp

are obtained by solving the adjoint conditions arising from the inner
produce ©Y

s
, (A®σB)Xª¯ 0, where X is an arbitrary vector. ©[,[ª denotes the

following inner product (see §3 of Coward & Renardy 1996) of two functions g
"
and

g
#
, expanded in Chebyshev polynomials :

g
"
¯ 3

N

i=!

g
"i

T
i
(zh ) exp (iα

"
x), g

#
¯ 3

N

i=!

g
#i

T
i
(zh ) exp (iα

#
x),

(g
"
, g

#
)¯

&C

!

exp [i(®α
"
­α

#
)x] dx

&C

!

dx
3
N

i=!

ga
"i

g
#i
.

Here, zh is normalized to [®1, 1] in the fluid layer, C represents a period in x, that is,
a multiple of both 2π}α

"
and 2π}α

#
. Thus, unless ®α

"
­α

#
¯ 0, the inner product

vanishes because of periodicity.
The eigenfunction Y

s
to the adjoint problem has the same dependence on x as the

eigenfunction. The normalization of X
s
and Y

s
is given by ©Y

s
,BX

s
ª¯ 1. Therefore

we obtain

©Y
s
, (A

v
X

v"#
®A{

v
X

v""
)ª¯ 4σ

v#
, ©Y

s
, (A

p
X

p"#
®A{

p
X

p""
)ª¯ 4σ

p#
,

©Y
s
, (A

v
X

p"#
eiδ®A{

v
X

p""
e−iδ­A

p
X

v"#
e−iδ®A{

p
X

v""
eiδ)ª¯ 4σ

vp
.

We next consider two special cases for which we may derive closed form expressions
for the growth rate of the interfacial mode: disturbances which have either
asymptotically long or short wavelengths.

4. Asymptotic analysis

4.1. Disturbances with long wa�elengths

The growth rate for a steady flow is given by the real part of σ
s
. The contribution due

to boundary oscillations is σ
v#

, while the oscillating pressure gradient gives rise to σ
p#

.
In addition, the stability is altered by the interaction of the oscillatory mechanisms, and
is quantified by σ

vp
. For the stability of steady two-layer flow to disturbances with

wavelengths αU 0, the leading order growth rate Reσ
s
(m, r,R

"
, l

"
,G,F ) is O(α#). With

flow parameters m¯ 10.1, r¯ 1, R
"
¯ 1, G¯ 0, T¯ 0, F−#¯ 0 and l

"
¯ #

(
the

asymptotic analysis yields Reσ
s
¯ 1.12637¬α#. Table 1 shows the computed results

for Reσ
s

based on the numerical scheme of the previous section. It also shows the
generic dependence of Reσ

v#
, Reσ

p#
, and Reσ

vp
on α#. In the limit αU 0, Coward &

Papageorgiou find that Reσ
v#

3 4.70708¬10−% α#, when ∆¯ 0.01. They denote the
channel depth by L, the lower fluid depth by D, a¯L}D¯ 1}l

"
, and their Reynolds

number is ml
#
(l­ml

#
}l

"
)R

"
. The agreement with table 1 is evident.

Further information on the convergence of σ
s
­∆#

v
σ
v#

for decreasing ∆
v
is obtained

by comparing our numerical calculations with the long-wavelength asymptotic theory
which is valid for all values of ∆

v
. Table 2 illustrates some results based on the αU 0
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α Reσ
s
¬α−# Reσ

v#
¬α−#(¬10−%) Reσ

p#
¬α−#(¬10−%) Reσ

vp
¬α−#(¬10−$)

0.1 1.1102 4.0521 5.4342 ®1.6634
0.01 1.1261 4.6993 5.6006 ®1.7626

T 1. Growth rates of disturbances to oscillatory plane Couette flow, as wavelength increases.
m¯ 10.1, l

"
¯ 2}7, R

"
¯ 1, G¯ 0, r¯ 1, T¯ 0, F−#¯ 0, ω¯ 1 and δ¯ 0.

∆
v

Equivalent Re(σ
v#

)
with αU 0

Growth rate
with αU 0

Re(σ¯σ
s
­∆#

v
σ

v#
)

with α¯ 0.001

0.4 2.2261¬α#¬10−% 7.4079¬α#¬10−$ 7.3882¬α#¬10−$

0.2 1.6875¬α#¬10−% 7.3791¬α#¬10−$ 7.3763¬α#¬10−$

0.1 1.3319¬α#¬10−% 7.3736¬α#¬10−$ 7.3733¬α#¬10−$

0.01 1.0128¬α#¬10−% 7.3723¬α#¬10−$ 7.3723¬α#¬10−$

T 2. Comparison of growth rates using long-wavelength asymptotics (Coward & Papageorgiou
1994) and our numerical scheme for decreasing amplitude. m¯ 2, l

"
¯ #

(
, R

"
¯ 1, G¯ 0, T¯ 0,

F−#¯ 0, r¯ 1, ω¯ 1 and δ¯ 0.

analysis of Coward & Papageorgiou (1994). For this flow σ
v#

¯ 9.905¬10−"" with
α¯ 0.001. When ∆

v
is small, this agrees with the second column of table 2 which shows

the component of the growth rate due to boundary oscillations for a given ∆
v

and
αU 0. For larger ∆

v
, the results begin to diverge, higher-order terms in ∆

v
are playing

a role here. The comparison between the overall growth rate for the long-wave limit
(column 3) and our numerical results is dominated by the magnitude of σ

s
which is the

same for both theories. As ∆
v
becomes even larger, it is evident that our theory based

on small amplitude of oscillation will no longer apply. However, even at ∆
v
¯ 0.4, we

still see the same order of magnitude for σ
v#

as the theory of Coward & Papageorgiou.
This indicates that the trends we observe may persist to larger amplitudes. This
motivates further work on finite amplitudes of oscillations, which is left for future
study.

4.2. Disturbances with short wa�elengths

The short-wave asymptotics of the interfacial mode involves a boundary-layer analysis
locally around the interface. We rescale the z-coordinate (Hooper & Boyd 1983;
Yiantsios & Higgins 1988a, b) and expand the variables in powers of 1}α for α( 1. We
extend previous analyses to include not only the effect of a forcing pressure gradient
but also time harmonic modulations of the upper boundary. To this end, we set
η¯α(z®l

"
), η¯O(1) as αU¢, and consider equations (1), (2a–d ) when the

streamwise wavelength is asymptotically large, α( 1. We use the following expansions

w¯®iα 0ψ!
­

ψ
"

α
­

ψ
#

α#

­
ψ

$

α$

­…1 e−iαf,

h¯α 0h!
­

h
"

α
­

h
#

α#

­
h
$

α$

­…1 e−iαf,

σ¯®iαc¯®iαU
s
(z¯ l

"
)®ic

!
®

ic
"

α
®

ic
#

α#

®
ic

$

α$

­…,

df

dt
¯U(z¯ l

"
, t)®U

s
(z¯ l

"
),
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where ψ
!
, h

!
,ψ

"
, h

"
,… are periodic functions in t with period 2π}ω, and c

!
, c

"
,… are

complex constants. We seek the first non-zero real contribution to σ to determine the
temporal stability of the interface. The form of these expansions has been motivated
by asymptotic analysis of the steady problem.

The no-slip boundary conditions are ψ, ¥ψ}¥ηU 0 as ηU³¢, and the leading-order
kinematic condition (2d ) is

dh
!

dt
¯ ic

!
h
!
3 h

!
¯ h

!!
eic!t,

which indicates that c
!

is an integer multiple of ω since h
!
(t) is periodic with period

2π}ω. To leading order, equations (1), (2a–d ) yield the solution

ψ
!
¯ ( ah

!
ηeη

®amh
!
ηe−η

η! 0,

η" 0,
a(t)¯

(m®1)

(m­1)

¥U
¥z

at z¯ l−
"
.

To next order the kinematic condition is

dh
"

dt
¯ ic

"
h
!
­ic

!
h
"
3 h

"
¯ h

"!
exp (ic

!
t)­ic

"
th

!
.

Since h
"
(t) is periodic we require c

"
¯ 0. At O(α−"), the interface conditions (2a–d ) and

momentum equations (1) are essentially the same as their O(1) counterparts since it is
easily shown that as αU¢,

U(z, t)®U(l
"
, t)¯

η

α

¥U
¥z

(l
"
, t)­

η#

2α#

¥#U
¥z#

(l
"
, t)­O 0 1

α$
1 .

The solution follows in the form

ψ
"
¯ ((ah

"
­bh

!
) η eη

(®mah
"
­bh

!
) η e−η

η! 0,

η" 0,
b(t)¯

m(1®r)R
"

2r(m­1)

¥U
¥t

at z¯ l
"
.

Continuing to next order we obtain momentum equations

0 ¥#

¥η
#

®11#ψ
#
¯

1

2

3

4

2R
"
h
!
eη9iaη

¥U
¥z

(l−
"
, t)­

da

dt:
2mR

#
h
!
e−η 9imaη

¥U
¥z

(l−
"
, t)­

da

dt:
(η! 0),

(η" 0).

These equations, together with the boundary conditions and the continuity of velocity
at the interface (2a), yield the solution

ψ
#
¯ ((A­B

"
η) eη­aE(η$®3η#) eη­F

"
η# eη
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#
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" 91l
"

®"

#
l
"
GR

"
­²(d

v
­d

p
e−iδ ) eiωt­c.c.´: , F

"
¯

h
!
R

"

4

da

dt
,

d
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"
l
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), d

p
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∆
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2iω
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"
cosh (β

"
l
"
)].

The kinematic condition determines the first imaginary component of the eigenvalue
c, namely c

#
, since

dh
#

dt
¯ ic

!
h
#
­ic

#
h
!
®iψ

#
(0, t). (7)
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The continuity of normal stress at the interface (2c) determines A such that

(m­1)

m
A¯ 6aE 0m#

r
®11®h

!
R
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4

da

dt 01­
m

r 1®
ih

!
Tα$

2m
®

iαh
!
R

"
(r®1)

2rF #

.

B
"

and B
#

are not explicitly required here, but can easily be obtained from the
equations of continuity of velocity and tangential stress (2a, b). Finally then, we can
determine c

#
which consists of the usual contribution from the steady flow, together

with components which are also steady due to the interaction of oscillatory flow (eiωt)
and complex conjugates (e−iωt),

c
#
¯

imαR
"
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01r®11® iα$T
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v
c
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c
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The leading-order growth rates given above provide a useful check on the numerical
scheme discussed in §2. For the case of plane Couette flow the numerical eigenvalue
calculations give excellent agreement with c

s
and c

v
. In the presence of a non-zero

pressure gradient the agreement is not as good. This discrepancy is explained by
considering the O(1}α$) contribution c

$
. As shown below, this term is due entirely to

the time dependence and quadratic terms in the basic flow. For steady plane Couette
flow U

zz
¯ 0, U

t
¯ 0 and it follows that c

$
is zero. Consequently, when G¯ 0 the short-

wave expansion for the growth rate is in powers of α−# as shown by the analysis of
Hooper & Boyd (1983).

At O(α−$) the Orr–Sommerfeld equations (1) yield
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The solution follows in the form
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α Re(σ
s
)¬α# Re(σ

v#
)¬α# Re(σ

p#
)¬α# Re(σ

vp
)¬α#

5.0 0.0295 0.0150 0.0002 0.0004
10.0 0.0571 0.0304 0.0006 0.0095
20.0 0.0528 0.0298 0.0009 0.0105
50.0 0.0502 0.0297 0.0012 0.0118

T 3. Oscillatory plane Couette–Poiseuille flow: Computed growth rates for disturbances with
increasing wavenumber. m¯ 0.5, l

"
¯ 0.7, R

"
¯ 1, G¯ 1.0, r¯ 1.0, T¯ 0, F−#¯ 0, ω¯ 1 and

δ¯ 0.

H
"
and H

#
can be determined by the continuity of velocity and tangential stress at the

interface. The kinematic condition is applied at z¯ l
"

and reads

dh
$

dt
¯ ic

!
h
$
­ic

"
h
#
­ic

#
h
"
­ic

$
h
!
®iJ.

Clearly then c
$

is obtained through the imposition of the normal stress continuity.
After some algebraic manipulations we obtain
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where the base flow and its derivatives (conjugates) are evaluated at z¯ l

"
. Table 3

illustrates the results.
The asymptotic results are :

Reσ
s
¯

0.04847

α#

­
0.08426

α$

­O 0 1

α%
1 , Reσ

v#
¯

0.02980

α#

®
0.00615

α$

­O 0 1

α%
1 ,

Reσ
p#

¯
0.00142

α#

®
0.01017

α$

­O 0 1

α%
1 , Reσ

vp
¯

0.01275

α#

®
0.04559

α$

­O 0 1

α%
1 .

A comparison of the coefficients in the asymptotic expansions reveals that the
correction terms in σ

s
, σ

p#
and σ

vp
are necessary. For example, with α¯ 20, the

asymptotics including the O(α−$) terms, agree with the numerical results up to the third
significant figure: Re σ

s
¬α#¯ 0.05268, Reσ

v#
¬α#¯ 0.02949, Reσ

p#
¬α#¯ 0.00091,

Reσ
vp

¬α#¯ 0.01047. With just the leading asymptotic term, the agreement is only to
one significant figure.
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5. Numerical results

Before considering the stability of oscillating plane Couette–Poiseuille flow we study
in detail the situation where the steady component of the pressure gradient is zero,
G¯ 0, and the base flow is due to the motion of the upper boundary alone. The results
have been convergence-tested.

5.1. The Couette case: G¯ 0

In the absence of time-dependent forcing the base flow is steady two-layer plane
Couette flow. The study of this flow is instructive in the understanding of the
phenomena which occur in more complicated flows. Here, we quantify the effect of the
oscillatory boundary motion and oscillatory pressure gradient on the interfacial mode.

The asymptotic expansion in powers of ∆
v

and ∆
p

begins with the leading-order
growth rate Reσ

s
. If this is non-zero, then, because the contributions from the

modulations are quadratic in ∆
v

and ∆
p
, their effect is small. For a conclusion to be

made, the critical case Reσ
s
¯ 0 is considered. Then, stability is achieved when Reσ

v#
,

Reσ
p#

and Reσ
vp

combine to be negative. For illustrative purposes, we will show
results at a chosen value of amplitude such as ∆

v
¯ 0.2; the trends observed there may

persist for larger amplitudes but this needs to be verified with future work. In figures
1(a)–1(c) we consider the case when the lower fluid is more viscous than the one above
(m" 1). The fluids have equal densities and the non-dimensional coefficient of surface
tension is T¯ 0.001, which has been included to stabilize short waves. As a sample low
Reynolds number for the lower fluid, we choose R

"
¯ 10. Using a Newton–Raphson

iteration scheme we then compute the critical wavenumbers and neutral stability curves
which are illustrated in figures 1(a) and 1(b), respectively. The dotted lines correspond
to the unmodulated case ∆

v
¯∆

p
¯ 0 (Renardy 1989). The solid lines show the neutral

stability curves when ∆
v
¯∆

p
¯ 0.2. The ®­® line shows results based on larger-

amplitude imposed oscillations, namely ∆
v
¯∆

p
¯ 1.0. Although our theory is based

on small-amplitude expansions, we include this extrapolated data to indicate the
qualitative trends; quantitatively, the effect of larger-amplitude forcing may, in fact, be
more pronounced. Figure 1(c) gives a magnified view of the results shown in figure
1(b). On this graph, we have also included the situation where there is no applied
pressure gradient ∆

v
¯ 0.2 and ∆

p
¯ 0 (dashed line), and also the case without plate

oscillations ∆
v
¯ 0 and ∆

p
¯ 0.2 (dashed}dotted line). For all m" 1 the time-periodic

oscillations tend to increase the critical wavenumber. With a shallower more viscous
lower fluid, the flow is destabilized by the interfacial mode. As the depth of the lower
layer increases we cross the neutral curves depicted in figure 1(b, c), above which
disturbances are stabilized by viscosity stratification. The imposition of the oscillatory
forcing (by either or both mechanisms) has a destabilizing effect on the otherwise
steady flow. The neutral curves are shifted to the left so that the region of instability
is increased. When both boundary fluctuations and pressure gradient oscillations are
present, and in-phase (δ¯ 0), we see a noticeable increase in the critical wavenumber,
especially for short-wavelength disturbances. For α" 20, the results illustrated in
figures 1(a)–1(c) are confirmed by the short-wavelength asymptotic calculations.

The analysis of Coward & Papageorgiou (1994) assumes long-wave perturbations
but makes no assumptions on the size of the oscillation amplitude. These authors
present evidence that an otherwise unstable flow can be stabilized by an oscillating
upper boundary. For example, they show that for a more viscous and shallower upper
fluid, the flow is stable when the oscillation amplitude exceeds 0.64 approximately (see
their figures 4(b) and 5). Conversely, when the upper fluid is thin and less viscous than
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F 1. (a) Critical wavenumbers for plane Couette flow with a more viscous lower fluid. ...,
∆

v
¯∆

p
¯ 0; ——, ∆

v
¯∆

p
¯ 0.2; ®­®, ∆

v
¯∆

p
¯ 1. r¯ 1, R

"
¯ 10, m" 1, G¯ 0, ω¯ 1,

T¯ 0.001, F−#¯ 0 and δ¯ 0. (b) Neutral stability curves for plane Couette flow with a more viscous
lower fluid. ..., ∆

v
¯∆

p
¯ 0; ——, ∆

v
¯∆

p
¯ 0.2; ­, ∆

v
¯∆

p
¯ 1. Physical parameters are the same

as in (a). (c) Expanded view of the neutral stability curves in (b). ..., ∆
v
¯∆

p
¯ 0; ——, ∆

v
¯∆

p
¯ 0.2;

– – –, ∆
v
¯ 0.2, ∆

p
¯ 0; –[–, ∆

v
¯ 0, ∆

p
¯ 0.2.

the fluid below, the flow is destabilized when the amplitude of the oscillations is
approximately 0.57 or greater (see their figures 2(b) and 3). Our analysis, on the other
hand, does assume small amplitudes, for which the effect on the growth rate is of
quadratic order. Thus, the effects we show in the figures for ∆

v
¯∆

p
¯ 0.2 are

numerically small, but the results are indicative of trends that may persist to larger
values of the amplitudes (see the extrapolated ∆

v
¯∆

p
¯ 1 data in figure 1(a, b)). In

particular, in viewing the interface height values on figure 1(c) for ∆
v
¯∆

p
¯ 0.2,

which vary approximately over 0.80 to 0.81 at the lower value of the viscosity ratio,
these appear to be numerically close, but the complement of these, focusing on the
thickness of the thinner layer, shows a 5% difference. This shows that in terms of the
layer thickness for a thin lubricating layer, the results on differences in critical
conditions can be significant. This effect would be even more pronounced at higher
viscosity ratios.

We have also done extensive computations on the situation reverse to figure 1, with
a less viscous lower layer so that m! 1. In figure 2(a, b) we illustrate our calculations
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F 2. (a) Critical wavenumbers for plane Couette flow with a less viscous lower fluid.
..., ∆
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¯∆

p
¯ 0; ——, ∆

v
¯∆

p
¯ 0.2; – – –, ∆

v
¯∆

p
¯ 1. r¯ 1, R

"
¯ 10, m! 1, G¯ 0, ω¯ 1,

T¯ 0.01, F−#¯ 0 and δ¯ 0. (b) Neutral stability curves for plane Couette flow with a less viscous
lower fluid. ..., ∆

v
¯∆

p
¯ 0; ——, ∆

v
¯∆

p
¯ 0.2; – – –, ∆

v
¯∆

p
¯ 1. Physical parameters are the

same as in (a).

of the critical wavenumbers and neutral stability curves for a representative flow with
the lower fluid at low Reynolds number (G¯ 0, R

"
¯ 10, ω¯ 1, F−#¯ 0, T¯ 0.001,

δ¯ 0). We observe that with a viscosity ratio 0.13!m! 0.39 the combined effect
of small-amplitude oscillations in the pressure gradient and the boundary motion
∆

v
¯∆

p
¯ 0.2 (solid line) yield similar critical wavenumbers to those of the

corresponding unmodulated case (dotted line). As m is increased above 0.4
approximately, the critical wavenumber is reduced by the imposition of time-periodic
forcing. The effect of the oscillating boundary or pressure gradient above, however,
leads to a slight increase in critical wavenumber over a significant range in viscosity
ratio.

With a much more viscous upper fluid, the steady flow is unstable when interface
height exceeds 0.251. With the inclusion of boundary and pressure oscillations of
amplitudes ∆

v
¯ 0.2¯∆

p
, instability is observed when l

"
" 0.2482, indicating a

destabilizing effect on the flow. At a viscosity ratio of approximately m¯ 0.23 the
neutral curves for the steady and the modulated flows coincide and a further increase
in the viscosity ratio indicates that the periodic forcing has a small stabilizing role. The
qualitative trends are indicated in figure 2(a, b) by the extrapolated results with
∆

v
¯∆

p
¯ 1 (dashed line). Beyond mE 0.51 the critical wavenumber rapidly decreases

and neutral stability points are given by the long-wavelength theory.
Surface tension forces are parameterized by the non-dimensional group T and enter

through the balance of normal stresses across the interface (see equation (2c)). It is well
known that for the unmodulated problem, surface tension stabilizes disturbances with
short wavelengths, while it is of secondary importance to density and viscosity
stratifications for long wavelength perturbations. We have observed similar trends in
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F 3. Effect of varying the frequency of oscillatory plane Couette flow. – – –, Reσ
v#

; –[–, Reσ
p#

;
——, Reσ

vp
. r¯ 1, R

"
¯ 1, m¯ 0.5, l

"
¯ 0.2, G¯ 0, F−#¯ 0, T¯ 0 and δ¯ 0. (a) Long wavelength

disturbances, α¯ 0.01. (b) O(1) wavelength disturbances, α¯ 1. (c) Short wavelength disturbances,
α¯ 20.

the presence of an oscillating boundary and}or time dependent pressure gradient. For
moderate or large wavenumbers α the region of instability in m®l

"
parameter space is

dramatically decreased as T increases. Additionally, critical wavenumbers are
uniformly lowered (see figure 3 of Coward & Renardy 1996). For large α the numerical
results rapidly approach those given by the leading terms in the asymptotic analysis in
§4. For neutral stability, the leading-order critical wavenumber is determined by
setting the real part of σ to zero:

α¯ (mR
"
(1®m)

(1­m)T 01®
m#

r 1 90
1

l
"

®"

#
GR

"
l
"1#­"

#
ωR

"
r∆

v
d
$
cosh (β

"
l
"
)r#:*"/$.

Coward & Papageorgiou (1994) considered the effect of varying the frequency of the
oscillations for long-wavelength disturbances. They showed that increasing the
frequency reduces the stabilizing or destabilizing effect of the unsteady terms. These
results can be understood by considering the unperturbed flow at high oscillation
frequencies. In such a regime the flow separates into a Stokes layer in the vicinity of
the oscillating wall, and away from this layer the flow is almost steady and corresponds
to two-phase Couette flow due to a boundary which moves with constant velocity. As
long as the Stokes layer is thin compared to the thickness of the upper layer, the
interfacial mode is expected to be insensitive to the small-amplitude wall modulations.
The three graphs in figure 3(a–c) extend these results for larger α. The solid lines plot
the growth rate Reσ

vp
against frequency 0.1!ω! 65, while Reσ

v#
and Reσ

p#
are

drawn with dashed lines and dashed}dotted lines. In figure 3(a) we consider
disturbances with long wavelengths α¯ 0.01. The flow has a less viscous shallow lower
layer. We find that as the frequency is increased, the growth rates of all three oscillatory
components decrease. Thus, at large frequencies, ω" 50 say, the stability char-
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F 4. The stabilising}destabilizing effect of the phase difference δ on the growth rates for
plane Couette flow. ..., Reσ

s
; ——, Reσ

vp
; – – –, Reσ

v#
; — ±—, Reσ

p#
. G¯ 0, ω¯ 1, and

0! δ! 2π. (a) Long wavelength disturbances : α¯ 0.01, r¯ 1, R
"
¯ 10, m¯ 2, l

"
¯ 0.47, F−#¯ 0

and T¯ 0. (b) O(1) wavelength disturbances : α¯ 1, r¯ 1, R
"
¯ 10, m¯ 2, l

"
¯ 0.7, F−#¯ 0 and

T¯ 0. (c) Short wavelength disturbances : α¯ 10, r¯ 2, R
"
¯ 20, m¯ 0.5, l

"
¯ 0.2, F−#¯ 0.1 and

T¯ 0.001. (d ) Short wavelength disturbances : α¯ 20, r¯ 2, R
"
¯ 20, m¯ 0.5, l

"
¯ 0.8, F−#¯ 0.1

and T¯ 0.001.

acteristics of the oscillatory and steady flows are almost identical. With α¯ 1 and 20
(figures 3(b) and 3(c), respectively) this trend is again observed. For short waves, the
destabilizing effect of the combined in-phase oscillations is suppressed by increasing the
frequency ω. We note that although Reσ

p#
is found to be an order of magnitude

smaller than Reσ
v#

and Reσ
vp

this too decreases as ω is increased. We expect the large
ω asymptotics to be a regular perturbation about the steady stage; this may be analysed
by the method of averaging.

Finally, we analyse the role of the phase shift δ between the oscillatory pressure
gradient and the planar motion of the upper boundary. The contribution to the growth
rate by σ

v#
and σ

p#
arise owing to the interactions of ei(ωt−δ) and their complex

conjugates. Thus, the introduction of a phase shift δ1 0 alters the stability of the flow
through σ

vp
alone. In figure 4(a–d ) we plot σ

s
(dotted line), σ

v#
(dashed line), σ

p#
(dashed}dotted line) and σ

vp
(solid line) against 0! δ! 2π for a variety of flows. In

each case we see that by altering the phase shift, the oscillatory forcing can either
stabilize or destabilize the flow. These figures show regimes where the interaction term
σ
vp

has an opposite sign to σ
v#

, σ
p#

and σ
s
, so that the total effect may be opposite from

a simple comparison of the separate effects of modulating the wall or pressure gradient
independently. The magnitude of δ required to achieve maximum stabilization or
destabilization depends upon the other physical parameters of the flow. The values of
δ for the two situations are π apart as evident in figure 4(d ) which shows plane Couette
flow with a deeper less viscous lower fluid. The perturbations to the flow have
wavenumber α¯ 20. When the boundary and pressure fluctuations are in-phase, σ

vp

is negligible. At δE "

#
π maximum stability is obtained. Conversely at δE $

#
π the
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F 5. (a) Critical wavenumbers for oscillating plane Poiseuille flow with a more viscous lower
fluid. ..., ∆

v
¯ 0, ∆

p
¯ 0; – – –, ∆

v
¯ 0.2, ∆

p
¯ 0; –[–, ∆

v
¯ 0, ∆

p
¯ 0.2, ——, ∆

v
¯ 0.2, ∆

p
¯ 0.2,

r¯ 1, R
"
¯ 10, m" 1, G¯ 1, ω¯ 1, F−#¯ 0, T¯ 0.1 and δ¯ 0. (b) Neutral stability curves for

oscillating plane Poiseuille flow with a more viscous lower fluid. Physical parameters are the same as
in (a).

Amplitude
∆

v

Amplitude
∆

p

Viscosity
ratio m

Minimum interface
height l

"

Critical
wavenumber α

c

0 0 5.220 0.74489 6.095
0.2 0 5.194 0.74368 6.076
0 0.2 5.192 0.74487 6.111
0.2 0.2 5.131 0.74238 6.096

T 4. Oscillatory plane Poiseuille flow: minimum interface heights below which all
disturbances are stable. (U$

u
¯ 0, R

"
¯ 10, G1 0, r¯ 1.0, F−#¯ 0, ω¯ 1, δ¯ 0.)

destabilizing role of σ
vp

is at its greatest. Thus, the combined effect of oscillating the
wall and the pressure gradient is not simply the superposition of their separate effects.

5.2. The Poiseuille case: U$
u

¯ 0

When the mean upper boundary is stationary, the base flow is oscillatory two-layer
Poiseuille flow. One difference with the Couette flow is that the second derivative of the
base flow enters into the correction terms in the short-wave asymptotic formulae,
necessitating the inclusion of the O(α−$) terms. This shifts the critical wavenumbers in
the short-wave range from the formula given in §4. In figure 5(a, b) we consider the
neutral stability curves of oscillatory plane Poiseuille flow with a more viscous lower
fluid layer (R

"
¯ 10, T¯ 0.1) ; (a) shows critical wavenumbers and (b) shows the

minimum interface height for which instability is possible. The non-zero pressure
gradient G is determined by the steady base flow at the interface, such that
G¯ 2(l

"
­ml

#
)}(ml

"
l
#
R

"
). The oscillations of the boundary and pressure gradient are

in-phase (δ¯ 0) and have frequency ω¯ 1. In figure 5 the solid lines show the effect of
the combined oscillations each with amplitude 0.2, while in the absence of periodic



Small-amplitude oscillatory forcing 103

(a)

G
ro

w
th

 r
at

e

× 10–5

G
ro

w
th

 r
at

e

0

–2

–4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
× 10– 6

5

0

–5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(b)

Viscosity ratio m

F 6. (a) Stabilizing effect of boundary oscillations for plane Couette–Poiseuille flow. Growth
rate as a function of viscosity ratio for a shallower, less viscous, more dense lower fluid: R

"
¯ 1,

l
"
¯ 0.34, α¯ 1, G¯ 18, ω¯ 1, T¯ 0.003, F−#¯ 0, δ¯ 0, ∆

v
¯∆

p
¯ 0.2 and r¯ 4. ..., Reσ

s
; ——,

derived from σ
s
­∆#

v
σ

v#
­∆#

p
σ

p#
­∆

u
∆

p
σ

vp
. (b) Destabilizing effect of boundary}pressure gradient

oscillations for plane Couette–Poiseuille flow. Growth rate as a function of viscosity ratio for a
deeper, less viscous, less dense lower fluid: R

"
¯ 1, l

"
¯ 0.7, α¯ 0.5, G¯ 1, ω¯ 1, T¯ 0.1,

F−#¯ 0.02, δ¯ 0, ∆
v
¯∆

p
¯ 0.2 and r¯ 0.8. ..., Reσ

s
, ——, derived from σ

s
­∆#

v
σ

v#
­∆#

p
σ

p#
­∆

v

∆
p
σ

vp
.

forcing we have neutral stability and critical wavenumbers plotted by the dotted line.
The separate effects with ∆

v
¯ 0.2, ∆

p
¯ 0 and ∆

v
¯ 0, ∆

p
¯ 0.2 are given by the

dashed and dashed}dotted lines, respectively. In the region below the neutral curves in
figure 5(b), the flow is linearly stable. As evident, for m" 1, instability is only possible
when the upper fluid is relatively thin. These figures show that the region of instability
is increased by the modulations. In table 4, we quantify the position of the minimum
value of the interface heights for instability, and show the uniformly destabilizing effect
of the oscillatory forcing for this flow. The critical wavenumbers (figure 5a) can move
either way.

In addition to changing the neutral stability, the imposed oscillations also alter the
critical wavenumbers plotted in figure 5(a). For m! 4.8 (approximately) the critical
wavenumbers are decreased by the imposition of an oscillatory boundary and}or
pressure gradient. For larger values of viscosity ratio we see a marked reduction in the
critical α for all three cases involving the time-periodic forcing.

5.3. The Couette–Poiseuille case

We now consider a flow where both the upper boundary and the pressure gradient have
a constant component and a time-periodic contribution. When the lower fluid is thin
and less viscous, the unmodulated flow is found to be unstable for a wide parameter
range. The oscillatory boundary motion with small amplitude ∆

v
can have a stabilizing

effect, however. In figure 6(a) we plot the growth rate Reσ against viscosity ratio m for



104 A. V. Coward and Y. Y. Renardy

× 10– 4 × 10– 4

× 10– 4× 10–5

0 2 4 6
Wavenumber

15

10

5

0

–5
G

ro
w

th
 r

at
e,

 R
e 

σ
p2

1

0.5

0

–0.5

–1
0 2 4 6

Wavenumber
0 2 4 6

Wavenumber

2

1

0

–1

–2

0 2 4 6
Wavenumber

8

6

4

2

0
G

ro
w

th
 r

at
e,

 R
e 

σ
s

G
ro

w
th

 r
at

e,
 R

e 
σ

vp
G

ro
w

th
 r

at
e,

 R
e 

σ
v2

F 7. Components of growth rate σ as a function of wavenumber α for plane Couette–Poiseuille
flow. Lower fluid depths ..., l

"
¯ 0.4; – – –, l

"
¯ 0.5; ——, l

"
¯ 0.6. R

"
¯ 1, m¯ 0.5, G¯ 1, ω¯ 1,

T¯ 0.001, F−#¯ 0.01, δ¯ 0 and r¯ 0.5.

a plane Couette–Poiseuille flow with parameters : R
"
¯ 1, l

"
¯ 0.34, α¯ 1, G¯ 18,

ω¯ 1, T¯ 0.003 and r¯ 4. The dotted line corresponds to the growth rate Reσ
s
of

the unmodulated flow and the solid line demonstrates the stabilizing effect of the
oscillatory motion of the upper plate with magnitude ∆

v
¯ 0.2. We note that for a

significant range in viscosity ratio the otherwise linearly unstable flow is completely
stabilized by the imposed oscillations. The additional contributions to σ owing to the
pressure fluctuations (namely σ

p#
and σ

vp
), are, in fact, negligible for this particular

flow.
In figure 6(b) we illustrate the effect of the forced oscillations for a flow which has

a deeper, less viscous lower layer. For viscosity ratios range 0!m! 1 the growth rates
σ
v#

, σ
p#

and σ
vp

are positive and therefore the oscillatory motion has a destabilizing
influence. As in the previous figure, the dotted line is for the unmodulated flow (Reσ

s
)

while the solid line is the complete growth rate Reσ.
In figure 7, we display Reσ

s
, Reσ

v#
, Reσ

p#
and Reσ

vp
against wavenumber α, for

different layer depths. The broken lines correspond to fluids with equal depths, the
solid line is for a deeper lower fluid, l

"
¯ 0.6, and the dotted line is for a shallower lower

layer with l
"
¯ 0.4. There is a complicated behaviour of the curves from each of the

terms. At each wavenumber, the interplay of these contributions determines the
stability. Finally, the expected effect of density stratification on the stability is shown
in figure 9(b) of Coward & Renardy.

6. Conclusions

We have considered the effect of time harmonic modulations to the boundary
velocity and pressure gradient which drive the flow of two fluids between flat parallel
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plates. Our main aim is to demonstrate that such modulations can have a stabilizing
or destabilizing effect on the interfacial mode.

The base flow is in the streamwise direction and has a steady component and time-
periodic part. The perturbations to the flow have streamwise wavenumber α. With
α( 1, we present an asymptotic analysis which yields a closed form expression for the
growth rate accurate to O(α−$). For steady plane Couette flow, the O(α−$) term
vanishes but the time dependence and quadratic profile in the base flow may generate
significant coefficients at this order. For long-wavelength disturbances to the oscillatory
flow our numerical results generalize the asymptotic results on Couette flow presented
by Coward & Papageorgiou (1994).

We have considered separately plane Couette, plane Poiseuille and combined
Couette–Poiseuille flows. The imposed oscillations are assumed to have small
amplitudes and this simplifies the analysis for the quadratic terms that correct the
unmodulated interfacial eigenvalue. Being quadratic in the amplitudes, these are
numerically small effects, but are expected to show trends that persist to larger
amplitudes. Such trends need to be verified with future work on finite amplitudes of
oscillations. We have taken sample situations at low Reynolds numbers for the lower
liquid and ∆

v
,∆

p
¯ 0.2, and focused on the viscosity stratification. For the critical cases

we examined, we have Reσ
v#

and Reσ
vp

larger than Reσ
p#

. With the assumption of
small oscillations, we are able to demonstrate complete stabilization or destabilization
of the interface in cases where the otherwise unmodulated interfacial mode has a
growth rate Reσ

s
which is small.

The combined stabilizing}destabilizing effect of boundary and pressure oscillations
(σ

vp
) cannot be inferred from the separate contributions to the growth rate, namely σ

v#
and σ

p#
. We have presented examples where Reσ

v#
, Reσ

p#
" 0 whereas the combined

effect stabilizes the interfacial mode. Moreover, the phase shift δ can alter the
magnitude and sign of Reσ

vp
.
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Appendix. Small-amplitude expansion

With ∆
v
,∆

p
' 1, the eigenvalue σ, interface height h(t) and velocity w(t) are

expanded asymptotically according to equations (3)–(5). The momentum equations (1)
and interface conditions (2a–d ) yield the systems of steady equations listed below.
Using the notation OxP3x(fluid 1)®x(fluid 2), evaluated at z¯ l

"
, the leading-order

steady equations are

1

R
i
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dz%
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y µ
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At O(∆
v
) the system is
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At O(∆
p
) we have
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The steady system of equations at O(∆#
v
) is
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The steady contribution at O(∆#
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) is
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The steady contribution at O(∆
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